Taller de repaso Tercer Corte

Taller de repaso Tercer Corte

Professional Development

16 Qs

quiz-placeholder

Similar activities

CDY 1.1

CDY 1.1

University - Professional Development

15 Qs

көбейту және бөлу 2-сынып

көбейту және бөлу 2-сынып

Professional Development

13 Qs

Teste - Aula - 1

Teste - Aula - 1

Professional Development

12 Qs

จำนวนเชิงซ้อน 1.1

จำนวนเชิงซ้อน 1.1

Professional Development

12 Qs

Complex Variables

Complex Variables

University - Professional Development

15 Qs

REMEDIAL MTK KELAS X

REMEDIAL MTK KELAS X

Professional Development

15 Qs

Maths

Maths

KG - Professional Development

14 Qs

Integration

Integration

University - Professional Development

20 Qs

Taller de repaso Tercer Corte

Taller de repaso Tercer Corte

Assessment

Quiz

Mathematics

Professional Development

Practice Problem

Hard

Created by

Fabian Muñoz

Used 7+ times

FREE Resource

AI

Enhance your content in a minute

Add similar questions
Adjust reading levels
Convert to real-world scenario
Translate activity
More...

16 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

15 mins • 1 pt

La FFT de los números:
  {1i,2+2i,3+i,4}\ \left\{1-i,2+2i,3+i,4\right\} 
corresponde a: 

 {10+2i,0,22i,4+4i}\left\{10+2i,0,-2-2i,4+4i\right\}  

 {10+4i,22i,6i,4}\left\{10+4i,-2-2i,-6i,-4\right\}  

 {10+2i,0,22i,44i}\left\{10+2i,0,-2-2i,-4-4i\right\}  

 {10+4i,2+2i,6i,4}\left\{10+4i,2+2i,-6i,4\right\}  

2.

MULTIPLE CHOICE QUESTION

15 mins • 1 pt

La FFT de los números:
 {1,2,3,4}\left\{1,-2,3,-4\right\} 
Corresponde a: 

 {2,22i,10,2+2i}\left\{2,-2-2i,10,-2+2i\right\}  

 {2,2+2i,10,22i}\left\{-2,2+2i,10,-2-2i\right\}  

 {2,22i,10,22i}\left\{2,-2-2i,10,-2-2i\right\}  

 {2,22i,10,2+2i}\left\{-2,-2-2i,10,-2+2i\right\}  

3.

MULTIPLE CHOICE QUESTION

15 mins • 1 pt

En la transformada discreta de Fourier para los valores complejos  {1/2,5/4i/2,1,1/4+i/4}\left\{1/2,5/4-i/2,-1,1/4+i/4\right\} , la magnitud más grande que alcanza el espectro de amplitud corresponde:

 954\frac{\sqrt{95}}{4}  

 964\frac{\sqrt{96}}{4}  

 974\frac{\sqrt{97}}{4}  

 984\frac{\sqrt{98}}{4}  

4.

MULTIPLE CHOICE QUESTION

15 mins • 1 pt

La transformada zeta de la sucesión 23nu[n3]\frac{2}{3^n}u\left[n-3\right] corresponde a: 

 2z327z9\frac{2z^3}{27z-9}  

 2z427z9\frac{2z^4}{27z-9}  

 227z39z2\frac{2}{27z^3-9z^2}  

 227z49z3\frac{2}{27z^4-9z^3}  

5.

MULTIPLE CHOICE QUESTION

15 mins • 1 pt

La transformada zeta de la función discreta: δ(n+3)5δ(n+1)+12nu[n]\delta\left(n+3\right)-5\delta\left(n+1\right)+\frac{1}{2^n}u\left[-n\right] 
corresponde a: 

 2z411z3+5z212z1\frac{2z^4-11z^3+5z^2-1}{2z-1}  

 2z411z3+5z2+12z1\frac{2z^4-11z^3+5z^2+1}{2z-1}  

 2z4+11z3+5z212z1\frac{2z^4+11z^3+5z^2-1}{2z-1}  

 2z4+11z3+5z2+12z1\frac{2z^4+11z^3+5z^2+1}{2z-1}  

6.

MULTIPLE CHOICE QUESTION

15 mins • 1 pt

La transformada zeta de la función discreta: x[n]=cos(π2n)u[n1]x\left[n\right]=\cos\left(\frac{\pi}{2}n\right)u\left[n-1\right] 
corresponde a:

 1z2+1\frac{1}{z^2+1}  

 1z2+1\frac{-1}{z^2+1}  

 11z2\frac{1}{1-z^2}  

 1z21\frac{1}{z^2-1}  

7.

MULTIPLE CHOICE QUESTION

15 mins • 1 pt

La transformada zeta inversa de la función:
 X(z)=12z+6z2+z6X\left(z\right)=\frac{12z+6}{z^2+z-6} 
sobre la región compleja z>3\left|z\right|>3 , en términos de funciones discretas, corresponde a: 

 (3(2)n2(3)n)u(n)δ(n)\left(3\left(2\right)^n-2\left(-3\right)^n\right)u\left(n\right)-\delta\left(n\right)  

 (3(2)n+2(3)n)u(n)δ(n)\left(3\left(2\right)^n+2\left(-3\right)^n\right)u\left(n\right)-\delta\left(n\right)  

 (32n+2(3)n)u(n)δ(n)\left(\frac{3}{2^n}+\frac{2}{\left(-3\right)^n}\right)u\left(n\right)-\delta\left(n\right)  

 (32n2(3)n)u(n)δ(n)\left(\frac{3}{2^n}-\frac{2}{\left(-3\right)^n}\right)u\left(n\right)-\delta\left(n\right)  

Create a free account and access millions of resources

Create resources

Host any resource

Get auto-graded reports

Google

Continue with Google

Email

Continue with Email

Classlink

Continue with Classlink

Clever

Continue with Clever

or continue with

Microsoft

Microsoft

Apple

Apple

Others

Others

Already have an account?